Course Description: This introductory course is for students who intend to pursue post secondary studies. Course content includes kinematics, dynamics, momentum, energy, circular motion, electricity, magnetism, sound, and optics. This class takes a conceptual approach to the study of physics with problem-solving applications. It is strongly recommended for college bound students who are not pursuing an education in the sciences or engineering. It may also serve as an introduction to students who plan to take AP Physics I the following year, but is not required for the AP course.

Table of Contents

<table>
<thead>
<tr>
<th>Unit #</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kinematics - One Dimensional</td>
</tr>
<tr>
<td>2</td>
<td>Vectors and Projectile Motion</td>
</tr>
<tr>
<td>3</td>
<td>Newton’s 1st and 2nd Laws</td>
</tr>
<tr>
<td>4</td>
<td>Newton’s 3rd Law, Impulse, and Momentum</td>
</tr>
<tr>
<td>5</td>
<td>Energy and Simple Machines</td>
</tr>
<tr>
<td>6</td>
<td>Circular Motion and Gravitation</td>
</tr>
<tr>
<td>7</td>
<td>Electricity</td>
</tr>
<tr>
<td>8</td>
<td>Magnetism</td>
</tr>
<tr>
<td>9</td>
<td>Waves and Sound</td>
</tr>
<tr>
<td>10</td>
<td>Optics</td>
</tr>
</tbody>
</table>
Standards

3.3.12.B Evaluate experimental information for relevance and adherence to science processes. Judge that conclusions are consistent and logical with experimental conditions.

3.2.P.B.1 Differentiate among translational motion, simple harmonic motion and rotational motion in terms of position, velocity and acceleration.

Big Ideas

<table>
<thead>
<tr>
<th>Essential Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>How can the motion of an object moving at constant velocity be described and represented?</td>
</tr>
<tr>
<td>How can the motion of an object that is accelerating be described and represented?</td>
</tr>
<tr>
<td>How do I use my basic skill set to conduct labs and solve problems?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kinematics parameters: position, speed, velocity, acceleration</td>
</tr>
<tr>
<td>Uniformly accelerated motion</td>
</tr>
<tr>
<td>Falling bodies</td>
</tr>
<tr>
<td>Graphical analysis of motion</td>
</tr>
</tbody>
</table>

Skills

| Distinguish between distance and displacement and speed and velocity |
| Create graphs using motion detectors and written or oral descriptions |
| Interpret displacement vs. time and velocity vs. time graphs |
| Interpret and solve 1D kinematics problems |

Standards

CC.2.3.HS.A.7 Apply trigonometric ratios to solve problems involving right triangles.

3.2.10.B1. Analyze the relationships among the net forces acting on a body, the mass of the body, and the resulting acceleration using Newton’s Second Law of Motion.

3.2.P.B1. Differentiate among translational motion, simple harmonic motion and rotational motion in terms of position, velocity and acceleration.

Big Ideas

<table>
<thead>
<tr>
<th>Essential Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>What information can be gathered from motion graphs?</td>
</tr>
<tr>
<td>What are the characteristics of the motion of a projectile launched horizontally?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forces are described by vectors.</td>
</tr>
<tr>
<td>Displacement, velocity, and acceleration are all vector quantities.</td>
</tr>
<tr>
<td>Force and acceleration are both vectors, with acceleration in the same direction as the net force.</td>
</tr>
</tbody>
</table>
Content
- Trigonometric ratios are applied to vector variables.
- Vectors can be broken down into components.
- All the information in one component direction (x or y) can be analyzed separately i.e. vector components are independent of one another.

Skills
- Apply trigonometric ratios to real world applications (projectile motion, cable tension, etc.)
- Solve physics problems involving relative velocity, projectile motion, and force vectors
- Demonstrate advanced problem solving skills (break down a complex problem, analyze the parts of the problem, recombine parts)

<table>
<thead>
<tr>
<th>Unit #/Title</th>
<th>3/Newton’s 1st and 2nd Laws</th>
<th>Time Frame</th>
<th>3 Weeks</th>
</tr>
</thead>
</table>

Standards

3.2.10.B1. Analyze the relationships among the net forces acting on a body, the mass of the body, and the resulting acceleration using Newton’s Second Law of Motion.

3.2.P.B.1 Use force and mass to explain translational motion or simple harmonic motion of objects.

CC.3.6.11-12.A. Write arguments focused on discipline-specific content.
- Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
- Provide a concluding statement or section that follows from or supports the argument presented.

CC.3.6.11-12.B Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
- Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting (e.g. headings), graphics (e.g. figures, tables), and multimedia when useful to aiding comprehension.
- Develop the topic thoroughly by selecting the most significant and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience’s knowledge of the topic.
- Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among complex ideas and concepts.
- Use precise language, domain-specific vocabulary and techniques such as metaphor, simile, and analogy to manage the complexity of the topic; convey a knowledgeable stance in a style that responds to the discipline and context as well as to the expertise of likely readers.
- Provide a concluding statement or section that follows from and supports the information or explanation provided (e.g., articulating implications or the significance of the topic).
Big Ideas

- All forces share certain common characteristics when considered by observers in inertial reference frames.
- Forces have magnitude and direction.
- Even though an object is at rest, there may be forces exerted on that object by other objects.
- Forces are detected by their influence on the motion of an object.
- If an object of interest interacts with several other objects, the net force is the vector sum of the individual forces.
- The acceleration of the center of mass of a system is related to the net force exerted on the system, where \(\mathbf{a} = \sum \frac{\mathbf{F}}{m} \).
- The acceleration of an object, but not necessarily its velocity, is always in the direction of the net force exerted on the object by other objects.
- Free-body diagrams are useful tools for visualizing forces being exerted on a single object and writing the equations that represent a physical situation.
- Objects in contact experience a frictional force and that the coefficient of friction is a property of the surfaces in contact only.

Essential Questions

- How can the forces acting on an object be represented?
- How can a free-body diagram be used to create a mathematical representation of the forces acting on an object?
- How do Newton’s laws apply to interactions between objects at rest and in motion?
- How do Newton’s laws apply to systems of two or more objects?

Content

- The motion of objects can be analyzed using a free body diagram.
- The effects of the net force acting on a body
- “Weight” as measured on a scale is not a “real” value, mass is the actual measurement of an object’s inertia
- Freefall is an example of net force changing over time

Skills

- Interpret data using analysis software
- Predict the effects of force and acceleration on an object
- Applying Newton’s Second Law (a mathematical equation), determine the position, velocity, acceleration, force, mass, coefficient of friction, etc. of a given object
Standards

3.2.10.B1
Use Newton’s Third Law to explain forces as interactions between bodies; Describe how interactions between objects conserve momentum.

Big Ideas
- A force exerted on an object is always due to the interaction of that object with another object.
- An object cannot exert a force on itself.
- If one object exerts a force on a second object, the second object always exerts a force of equal magnitude on the first object in the opposite direction.
- Momentum is always conserved in the absence of outside forces.
- Impulse is the application of Newton’s Third Law.

Essential Questions
- Why do objects respond differently when they collide?
- When can you determine what happens to the motion of objects after they collide?

Content
- Newton’s Third Law (equal and opposite forces)
- Momentum is conserved
- Outside factors (forces) acting on the system negate momentum conservation
- The time over which an impulse occurs affects the amount of force felt by an object

Skills
- Calculate the speed of an object after a collision
- Determine the type of collision that occurred
- Analyze the impulse equation to determine how a change in one factor will affect other factors
- Analyze/interpret integrals using software as a calculation tool

Standards

3.2.12.B1
Describe the work-energy theorem. Explain the relationships between work and power.

3.2.12.B2
Demonstrate how the law of conservation of energy provides an alternate approach to predict and describe the motion of objects.

3.2.C.B3
Describe the law of conservation of energy.

3.2.P.B2
Explain the translation and simple harmonic motion of objects using conservation of energy and conservation of momentum.
<table>
<thead>
<tr>
<th>Big Ideas</th>
<th>Essential Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>● Energy can change form or be transferred from one form to another, but it is never “used up” or created or destroyed.</td>
<td>● How are the different modes of energy storage transformed within a system and transferred between a system and the environment?</td>
</tr>
<tr>
<td>● A machine can increase or decrease force/distance but cannot increase/decrease the work</td>
<td>● How can energy be represented with graphs and equations?</td>
</tr>
<tr>
<td>● Energy is conserved, in the sense that the changes of energy in a given system are always equal to the transfer of energy to or from the system by all possible interactions with other systems.</td>
<td>● What does it mean for energy to be conserved?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>● The change in the kinetic energy of an object depends on the force exerted on the object and on the displacement of the object during the interval that the force is exerted.</td>
<td>● Use net force and velocity vectors to determine qualitatively whether kinetic energy of an object would increase, decrease, or remain unchanged</td>
</tr>
<tr>
<td>● The energy of a system includes its kinetic energy, potential energy, and microscopic internal energy. Examples should include gravitational potential energy, elastic potential energy, and kinetic energy.</td>
<td>● Predict changes in the total energy of a system due to changes in position and speed of objects or frictional interactions within the system</td>
</tr>
<tr>
<td>● Since energy is constant in a closed system, changes in a system’s potential energy will result in changes to the system’s kinetic energy.</td>
<td>● Calculate changes in kinetic energy and potential energy of a system, using information from representations of that system.</td>
</tr>
</tbody>
</table>
Standards

- **3.2.10.B1** Analyze the relationships among the net forces acting on a body, the mass of the body and the resulting acceleration using Newton's Second Law of Motion.
- **3.2.10.B1** Apply Newton's Law of Universal Gravitation to the forces between two objects.
- **3.2.12.B6** Compare and contrast motions of objects using forces and conservation laws.
- **3.2.P.B2** Explain how gravitational forces give rise to rotational motion.
- **3.2.P.B6** Use Newton's laws of motion and gravitation to describe and predict the motion of objects ranging from atoms to the galaxies.
- **3.2.P.B.1.** Relate the torque and rotational inertia to explain rotational motion AND differentiate among translational motion and rotational motion in terms of position, velocity and acceleration.
- **3.2.12.B1.** Analyze the principles of rotational motion to solve problems relating to angular momentum and torque.

Big Ideas

- Forces are described by vectors
- Gravitational forces are exerted at all scales and dominate at the largest distance and mass scales.
- A torque exerted on an object can change the angular momentum of an object.
- The angular momentum of a system is conserved.

Essential Questions

- What force or combination of forces keeps an object in circular motion?
- How can net force and gravitational force be applied to predict rotational and orbital motion?
- How is the motion of the moon around the Earth like the motion of a falling apple?
- How does the effect of Earth's gravitational field on an object change as the object's distance from Earth changes?

Content

- Gravitational forces always occur between two objects with mass
- Circular motion is the result of the net inward acting force acting on an object rather than a fundamental force
- Only the force component perpendicular to the line connecting the axis of rotation and the point of application of the force results in a torque about that axis.
- Angular momentum is affected by the rotational inertia and angular speed of an object

Skills

- Identify/describe circular orbits as they relate to force, acceleration, and velocity
- Represent forces in diagrams or mathematically using appropriately labeled vectors with magnitude, direction, and units during the analysis of a situation.
- Explain the difference between rotational inertia and angular momentum
- Calculate the linear and rotational velocity for a spinning object
- Solve problems involving centripetal force
- Solve problems involving torque
<table>
<thead>
<tr>
<th>Standards</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.P.B4</td>
<td>Explain how stationary and moving particle result in electricity and magnetism. Develop qualitative and quantitative understanding of current, voltage, resistance, and the connections among them. Explain how electrical induction is applied in technology.</td>
</tr>
<tr>
<td>3.2.12.B4</td>
<td>Describe conceptually the attractive and repulsive forces between objects relative to their charges and the distance between them.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Big Ideas</th>
<th>Essential Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The electric charge of a system is conserved.</td>
<td>• How are electric charge, electrostatic forces, electric field, electric potential (voltage), and potential difference related?</td>
</tr>
<tr>
<td>• For all systems under all circumstances, energy, charge, linear momentum, and angular momentum are conserved.</td>
<td>• What are the relationships between voltage, current and resistance?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Content</th>
<th>Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Electric charge is a property of an object or system that affects its interactions with other objects or systems containing charge.</td>
<td>• Apply the concepts of conservation of charge</td>
</tr>
<tr>
<td>• The electric field inside of a conductor is always zero</td>
<td>• Describe and apply the phenomenon of induced charge</td>
</tr>
<tr>
<td>• Electric field lines are similar to gravitational field lines</td>
<td>• Use Coulomb's Law to calculate electrostatic forces</td>
</tr>
<tr>
<td>• Electric force results from the interaction of one object that has an electric charge with another object that has an electric charge.</td>
<td>• Describe the similarities between gravitational potential energy and electric potential energy</td>
</tr>
<tr>
<td>• Matter has a property called resistivity.</td>
<td>• Understand the operation of an electric battery</td>
</tr>
<tr>
<td>• Kirchhoff's junction rule describes the conservation of electric charge in electrical circuits. Since charge is conserved, current must be conserved at each junction in the circuit.</td>
<td>• Use Ohm's law to solve V-I-R problems</td>
</tr>
<tr>
<td>• Kirchhoff’s loop rule describes conservation of energy in electrical circuits.</td>
<td>• Calculate the electric power transformed by an electric device</td>
</tr>
<tr>
<td></td>
<td>• Calculate equivalent resistance in series and parallel</td>
</tr>
<tr>
<td>Unit #/Title</td>
<td>8/Magnetism</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
</tbody>
</table>

Standards

- **3.2.P.B4** Explain how stationary and moving particles result in electricity and magnetism.
- **3.2.10.B4** Describe the relationship between electricity and magnetism as two aspects of a single electromagnetic force.
- **3.2.P.B2** Explain how gravitational, electrical and magnetic forces and torques give rise to rotational motion.
- **3.2.P.B4** Explain how electrical induction is applied in technology.

Big Ideas

- Electricity and magnetism are two components of the same force (electromagnetism)
- Magnetic properties are the result of the subatomic structure of a material
- Electromagnetic forces underlie alternating current power

Essential Questions

- How are magnets formed?
- What is a magnetic field and how is one created?
- Can you create current without a battery?

Content

- Electric current creates a magnetic field and a changing magnetic field creates a current
- Domains align to form both temporary and permanent magnets
- The right hand rule is used to determine the direction of a magnetic field, current force on a current-carrying wire
- Motors and generators use electromagnetic forces to function
- Transformers, which work only with alternating current, allow electric power to be transmitted over large distances

Skills

- Identify the conditions under which a magnetic field and/or current are present
- Analyze the effect that heating, cooling, or the presence of another magnetic field has on a temporary or permanent magnet
- Use the right hand rule to analyze forces or field directions
- Describe the similarities and differences between motors and generators
- Explain why transformers only work with alternating current
- Determine the cost of electricity given the wattage and time used for a device (such as a light bulb)
Standards

| Standards | 3.2.P.B5 | Explain how waves transfer energy without transferring matter. Explain how waves carry information from remote sources that can be detected and interpreted.
Describe the cause of wave frequency, speed and wavelength.
3.2.10.B5 | Describe the difference between sound and light waves. Compare and contrast the wave nature of light and sound. |

Big Ideas

- A wave is a traveling disturbance that transfers energy and momentum.
- A periodic wave is one that repeats as a function of both time and position and can be described by its amplitude, frequency, wavelength, speed, and energy.
- Interference and superposition lead to standing waves and beats.

Essential Questions

- How are waves and harmonics related to one another?
- How are waves energy transport phenomena?
- How do the relative velocities of the source of a wave and of the observer affect the frequency of the observed wave?
- How do waves from more than one source interfere to make waves of smaller or larger amplitude, depending on the location where the waves meet?
- How can wave boundary behavior be used to derive and apply relationships for calculating the characteristic frequencies for standing waves in strings, open pipes, and closed pipes?
- How does human perception affect our understanding of loudness? Pitch? Music vs. noise?

Content

- Waves can propagate via different oscillation modes such as transverse and longitudinal.
- Sound waves require a medium to propagate
- Wave properties such as wavelength, frequency, and amplitude determine the characteristics of the wave
- Waves interact to produce amplitude and frequency variations.
- Standing waves only occur at specific wavelengths/frequencies

Skills

- Distinguish between transverse and longitudinal waves by focusing on the vibration that generates the wave and the movement of the wave
- Explain and/or predict qualitatively how the energy carried by a sound wave relates to the amplitude of the wave, and/or apply this concept to a real-world example
- Identify wave properties and their effect on the wave type
- Determine the type of interference that will occur based on the frequency of interfering waves
- Using properties of reflection and interference, determine what harmonics or standing waves will be present
Standards

3.2.P.B5: Explain how waves transfer energy without transferring matter, carry information from remote sources that can be interpreted and detected. Describe the causes of wave frequency, speed, and wavelength.

3.2.10.B5 Describe the difference between sound and light waves. Compare and contrast the wave nature of light and sound.

Big Ideas

- Vision is partly based on human perception.
- Light is both a wave and a particle. It transfers energy and information with massless particles called photons.

Essential Questions

- How is it possible for one person to see the same thing differently from another person?
- How are real and virtual images similar to and different from one another?

Content

- Understand what it means for light to be polarized
- Light behaves as a ray/particle
- Light follows the law of reflection for mirrors and the rules of refraction for changing mediums

Skills

- State the properties of light that make it like a particle and those that make it like a wave
- Explain absorption and reflection as they relate to seeing color
- Explain how frequency and wavelength are related to color
- Explain why primary paint and light colors are different
- Analyze a situation where reflection and absorption alter the colors seen by the viewer
- Draw diagrams to predict the size, location, and type of image with either a mirror or a lens
- Identify the primary colors of light